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0 Every effort is made by the NACA to

MYER

insure that its published
translationsare accurate reproductionsof the originalwork of
the authors. Papers are selectedfor translationon the basis of

d interestand probableusefulnessand, although an examination5.s
made for technicalso~ndness,the Committee cannot assume respon-
sibilityfor the accuracyof the detailed results presentedby
the author in the original paper. The Committeewill, of course,
call attentionto any errors observed at the time of the publica-
tion or subsequentthereto.

A recent applicationof equation 21 on page 14 of T1X1317
indicatedthat the denominatorof the last term, which is given
as 2 in the NACA translationand in the original German documenty
should be 1.
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A SIMPLE NUMERICAL METHOD FOR TEE CALCULATION OF
THE LAMINAR BOUNDARY LAYER

By K. Schr6der

April 1952

In the errata no. 1 issued on this paper, the last term of equa-
tion (21) was corrected as follows:

Wp+l) - @EpJ
1

Subsequent consideration of this errata indicates that this corrected
~2

term is valid only for the case when k = ~. Therefore, when equa-

tion (21) is used for general applications, the last term therein
should be

B(EP+J - U(EP.J.
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A SIMPLE NUMERICAL METHOD FOR THE CALCULATION

OF TEE LAMINAR BOUNDARY

By K. Schr~der

ABSTRACT

A method is described which permits an

LAYER*

t

arbitrarily accurate calcu-
lation of the laminar boundary la~er with the aid of a-difference cal-
culation. The advantage of this method is twofold. Starting from
Prandtl’s boundary-layer equation and the natural boundary conditions,
nothing needs to be neglected or assumed, and not too much time is
required for the calculation of a boundary-layer profile development.
So far, the method has been tested successfully in the continuation of
the Blasius profile on the flat plate, on the circular cylinder inves-
tigated by Hiemenz, and on an elliptical cylinder of fineness ratio 1:4.
Above all, this method offers for the ftist time a possibility of con-
trol by comparison of methods known so far, all of which are burdened
with more

I.

II.

III.

Iv.

v.

or less decisive presuppositions.

OUTLINE

INTRODUCTION

GENERAL REPRESENTATION

PRACTICAL EXECUTION

NUMERICAL EXAMPLES AND

OF THE METHOD

RESULTS

REMARKS REGARDING b CONVERGENCE OF THE ITERATION PROCESS

*“Ein einfaches numerisches Verfahren zur Berechnung der lsmtisren
Grenzschicht.” Zentrale f%r wissenschaftlichesBerichtswesen der Luft-
fahrtforschung des Generalluftzeugmeisters(ZWB) Forschungsberidt
Nr. 1741, Berlti-A~ershofj Febrwy 25, 1943..,
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I. INTRODUCTION

,

,“

The flow processes in the laminar boundary layer may be described
by Prandtl’s boundary-layer equation. If one ltiits oneself to the two-
dimensional steady case and introduces, in a suitable region around a
profile contour C situated in a flow, a curvilinear coordinate system
s,m, the coordinate lines of which consist of parallel curves and nor-
mals of C, that equation reads

avs hvs 1 %s

‘sz ‘Vn-x +p’(s) =–—
R &2

(1)

when VS, vn
the Reynolds
taken from a

signify the velocity components in the s,n system, R
number, and p = p(s) the pressure distribution along C
measurement or calculation. Equation (1) is complemented

by the continuity equation

dvs avn o
—+-=. (9)

The transformation

7 =n

yields, instead of equations

avs

‘s-&-+

(1) and (2), the equation system

avs ~2vs
VT -ay +p’(s) =—

~T2

avs + ~vv_ ()
——

- .

(3)

(4)
ds %

in which R no longer appears explicitly.

1A mathematically complete derivation of equations (1) and (2)
based on physically plausible assumptions may be found in H. Schmidt’s
and K. Schr8der’s report entitled “Die Prandtlsche Gren!zschichtgleichung
als asymptotischeN&herung der Navier-Stokesschen Differentialgleichungen
bei unbegrenzt wachsender Reynoldsscher Kennzahl” (Prandtl’s boundary-
layer equation as am asymptotic approximation of Navier-Stokes’ differ-
ential equations for indefinitely increasingReynolds number) Deutsche
Mathemat~k, 6, Heft 4/5, pp. 307~322. A s&ey-of related literature
is given in H. Schmidt’s smd K. Schr8derSs
I. Teil” (Laminsxboundary layers, part I)
Lieferung 3, 1942.

rep&t “Laminare Grenzschichten,
Luftfahrtforschung 19,
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The followtig boundary conditions for the integration of equa-
tions (3) and (4) are usually selected in boundary-layer theory,as the “
natural ones from the physical point of view. For an initial value s = S.
an

is
in

entrsace profile

Vs = ~s(%)v)

prescribed as a function of ~ (entrance condition). Furthermore,
consequence of the adherence‘ofthe fluid to the contour, the rela-

tions

[1
Vs =0

0 H
~o=o

which are to be interpreted as limiting processes, are to be valid along
C (adherence condition). Finally, for s-values larger tlnanor equal
to so the velocity component vs is to converge for q j m toward
the velocity U(s) which is connected with the prescribed pressure
distribution P(S) by

u(s)

(transitional condition).

‘Thegeneral significance
cussed more thoroughly in the
report quoted in footnote 1.
sitional condition formulated
condition for n~m since

u’(s) = - p’(s) (5)

of these boundary conditions will be dis-
second part of the Luftfahrtforschung
Here we shall only point out that the trsn-
for ~ ~ co must not be confused with a
for the latter limiting process the veloc-

ity components converge toward those of the basic flow2. The limiting
process q- m denotes, on the contrary, the asymptotic transition
to the boundary values, resulting along Q of the outer potential flow
obtained for R’+ m. This can”best be made clear by the example of
the stagnation-pointflow at the flat plate, treated in the second reprt
indicated in footnote 1 (by the author and H. Schmidt).. Whereas the
quantity b there specified as boundary-layer thickness tends

like l/fi toward zero, a quntity d tending toward zero, for

instance, like l/~, can be prescribed in such a manner that the flow
outside of a layer of the thickness d adhering to the contour for
R+ co converges timrd the outer potential flow. However, to the
asymptotic transition toward the boundary values of this assumed Ptential

21t is assumed, of course, that this l~iting process is meaning-
ful.

II I II I
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flow along C then there corresponds the limiting process

So far, an appropriate existence and uniqueness theorem for this
boundary-value problem does not exist. However, the results obtained
with the new method described below show that the statement of the
problem is perfectly sensible.

In the literature it has been pointed out more than once3 that for-
mal power series developments of the function representing the solution
with respect to q make the fact plausible that the entrance profile
cannot be selected completely arbitrarily, but that it is dependent on
the pressure distribution p = p(s).

Our method for the determination of the velocity profiles yields a
numerical solution of the mentioned boundary-value problem with the aid
of the difference calculation; it is superior to other methods because
it requires no assumptions beyond equations (3) snd (4) and the boundary
conditions. In our method, the boundary-layer bonds of the entrance
profile do not appear directly and thus do not cause any difficulties in
the numerical calculation. A severe violation of these bonds causes,
in our method, the variation of the successive boundary-layer profiles
to become completely disordered. Small violations of these.bonds, in
contrast, do not exert any considerable effect on the further develop-
ment of the profile4.

%ompare S. Goldstein “Concerning Some Solutions of the Boundary-
Layer Equations in Hydrodyn~ics}” Proc. Cambridge phil. SOC. 26) 1930j
PP. 1-30, L. Prandtl, “Zux Berechnung der Grenzschichten” (Concerning
Calculation of the Boundary Layers) ZAMM. 18, 1938, pp. 77-82, (NACA
TM 959) and H. Ckktler, “Weiterentwicklungeines Grenzschichtprofils
bei gegebenem Druckverlauf” (Further development of aboundsry-layer
profile for prescribed pressure”variation) .zAMM.19, 1939, PP. 129-lM.

%. Prandtl and H. G&’rtler(reports quoted in footnote 3) arrive
at the same conclusion, altho@ on another basis.
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. II. GENERAL REPRESENTATION

If one introduces into.equation (3),
pendent vsriable

Ps

5

OF THE METHOD

instead of s, the new inde-

(6)

under the assumption that U(s) # O for Szso whereby

is valid, ad if one uses the new desi~ations

u(~,~) = Vs(s,?l),U(E) = U(S(E)), U*(E,V) = d~,q) -m)

there follows from equations (3) and (4) by way of

with equation (5) taken into consideration,our initial equation
o

au* ~2u* 1 au
J

‘&dq_u*k—- —= ——
a5

——
~v2 U(E) a~

(7)
6(E),h o ~~

Accordtig to the statement of the problem in the introduction, we
have to find a solution

.

*
u = u*(EJl)

of equation (7) for all points (E,q) in the right upper quadrsd of
the plane of the rectangular Cartesian ~,~ coordinates which in
approaching the straight lines

5 = O or q = O respectively

51f separation phenomena appear> the solution will, h general, be
of interest only up to the separation point or possibly a little way
beyond it.
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tends toward prescribed functions:

lim U*(lj)V) = VS(SO,V) - U(so) (q 2 o) (8)
~+o

or

(9)

snd which vanishes for TI-CCI

lim u*(!.,~) = O (E 20) (10)
h--+”

‘l?hefundamental formulation of our method consists in using the
functional relation (7) - in the sense of the lmown method of successive
approximations - for the calculation from a prescribed approximate solu-
tion which already satisfies the indicated boundary conditions of a
sequence of corrected functions,which converges towsrd the actual solu-
tion of the problem; one substitutes the last obtained approximate solu-
tion every time on the left side of equation (7) ,pndintegrates the
resulting partial differential equation of the type of the inhomogeneous
heat conduction equation.

The exsmples so far calculated numerically showed that the iteration
process is obviously convergent. Nevertheless, a general proof of this
fact would be very desirable and we reserve returning, in a given case,
to a mathematical examination of.these problems. (Compsre also Section V.)

One may characterize the method by stating as the desired result a
continual tiprovement of a given approximate solution in the sense of
Oseen’s method of linearization. Then this linearization of the hydro.
dynsmic equations of gmtion (which, of course, for the boundary-layer
flow taken by itself is not permissible) consists in introducing the
velocity loss u* and in neglecting all nonlinear terms in U*,V and
their derivatives. From equation (3) one would thereby obtain

b%u(s) S&.—— +U*Q!2=0

bq2 b
..

thus on the left side (aside from the term u*% which, however, does

not alter the character of the equation) precisely the expression which
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also appears on the left side of our initial equatiori(7).

In inte~ating (under the
the differential equation

au*
‘r

into which had been’titroduced

!

f(E,”n).=

to be regm.ded as known in

1

boundary conditions {8), (9), and (10))

a%l* _
f(E)n)

*2

for abbreviation the function

(11)

(12)

the sense of our approximations, one may now
use successfully the difference calculation. For the homogeneous equa-
tion this has been done, simultaneous with a proof of convergence,by

JR. Courant, K. Friedrichs, and H. Le . For the inhomogeneous equation
here dealt with, the proof of convergence together with a formula for
error estimation may be found in a paper by L. Collatz7.

If one covers the right upper quadrant of the ~jq plane by a net
of lattice points with the coortiates

Ep = pk (p, u ~ 0, integers)

(compsre fig.
applications,

1) and introduces at the same time: with a view to later
the new designations

up,fJ= u(Ep>nu)) l-l*p,u= u*(Ep)lla)

[1

au

= [*1P,. [*]!=EP,,=7: [*lP,.x E=Ep,q=Tlu

%. Courant, K. Friedrichs, ad H. Lewy: “tier die partiellen
Differenzengleichungender mathematischen Physik” (On the partial differ-
ence equations of mathematical physics), Math. Ann. 100, 1928, pp. 32-74,
particulsxly pp. 47-52.

7L0 collat~: “Das Differenzenverfahrentit h~herer Approximation
f& lineare Differenzengleichungen” (The differencemethod with higher
approximation for linear difference equations), Schriften des Math. Sm.
u.d. Inst. f. agewandte Math.d.Univ. Berlin, Bd. 3, Heft 1, 1935.
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there correspmds to the differential.equation (11) the difference equa-
tion of first approximation

If one selects the step magnitudes k and 2 fi ~ and q direction
not independent of each other but so that

k.: (14)

equation (13) is transformed into the simpler difference equation

U*
u*p+l,u =

p,o+l + u*p,a-1
+ kfp,a

2
(15)

It canbe shown that the solution of equation (15) for the corresponding
boundary-value problem for 2—+0 and therewith
verges toward the known solution of the boundary
tion (11).

Since the values

also for keo
value problem of

con-
equa-

u*p,o (p 2 o) U*O,O (U2 o) fp,u (p20,u 20)

are known, one may, according to equation (15), sticcessivelycalculate
all values

*
u p,cT (p 2 O,(Y20)

progressing stepwise from lattice point column to lattice point column.

Actually, however, we apply another correction at every step in order
to compensate the systematic error originating by the fact that the
derivative appearing on the left side of equation (11)

/ Hau*a~ p,cr

0
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was replaced by the difference quotient of

U*P+l,U - u*p,cJ

9

first approximation

k

(Compare the following section.)

One notes that due to the transitional condition [10) for the entrance. .
profile U*O ~ necessarily must vanish for

9 ‘+ and ‘hat fp,cs
likewise vanishes.for aj~, since even the approximate solution used
for the formation of f~,a was supposed to satisfy the condition (10);

hence one recognizes that the corrected solution (obtainedwith the aid
of the difference calculation in the manner described above) also satis-
fies’the transitio=i condition (10).

III. PRACTICAL EXECUTION

In practice one may vary the method in such a manner that one does
not at all require sm approximate solution prescribed at the outset in
the first quadrant of the ~,q-plane; one rather determines this approx-
imate solution for every step and then improves it to the desired accuracy
before passing on to the next step. Thus one applies a combined system
of continuation and correction.

If one deals with the flow about a profile contour, the initial pro-
file at the point s = so is best taken from the well-known power-series
developmentsby Blasius-Hiemenz, the coefficients of which for the first
three terms were given in table form by Howarth8. For reasons of con-
vergence, these broken-off series will represent a good approximation of
the solution of the boundary-layer equation
the forward sta@ation point (s = O) of the
the permissible range they represent, as.it
point flow.

Oux calculations So far have shown that

only at a small distance from
outer potential flow. In
were, an improved stagnation

the series are serviceable
up to s-values for which the “first boundary layer bond”

(16)

8Compare L. Howarth: On the calculation of steady flow in the
boundary layer near the surface of a cylinder in a stresm. R & M no.
1632, 1934.
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which is a direct result
sufficient accuracy.

In practice, one has
mating the function
polynomial of the form

of equations (3) and (6) is”satisfied with

therefore to start the calculation by approxi-
for -11 s-values as well as possible by a

u(s) = Uls,+ U3S3

for the case of a profile symmetrical in
respectively, of the form

+Us 5
5

free-stream direction, or

u(s) = u~s + U@=’ s+Us 3

for the case of a profile unsymmetrical in free-stream direction; one
may sometimes get by with only two terms.

After having determined, in the manner described above, the value
So>o at which the continuation method may start, one first sets up
the connection (givenby equation (6))

J5“= = (s > so)
so u(t)

by evaluating the integral
the trapezoidal rule. One
and U . U(s) in a common
taken from it.

on the right side, for instance according to
graphically represents the functions E =5(s)
diagram so that ~ = ~(~) can be immediately

and 1, connected by equation (14), must be
sufficient number of subdivision points are

The step magnitudes k
selected so that, first, a
distributed over the profiles to be calculated, and second, a sufficiently
rapid continuation in ~ direction is possible. When profiles of not
too pronounced S-shape (near the separation point) are to be calculated,
eight to ten equidistant sub~vision Ptits generally will be sufficient
to define the profile. In upward direction (that is, for large 11 values)
one will have to take so many subdivision points that the profile dies
out sufficiently grad-uy toward the asymptotic value ~. T&h provides
a first indication for the selection of 2 and therewith also of k.
It should finally be remarked regarding the step ma~itude k that it
must be at least large enough to make, for fixed ~ and variable ~,

~ (obtained in firstthe derivatives
a!

difference quotients) take a reasonably
following discussion). Hence the lower
with also for 1.

approximation by formation of

regular course (compare the
limit is set for k and there-
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On the other hand, one will be forced to choose the smallest possible
step magnitude k at points ~ where the curves u = u(<,const) exhibit
great curvatures (which occurs particularly directly ahead of the separa.
tion ~tit), in order to make a sufficiently exact calculation of the
profiles @ssible. There Z, too, will necesssrilybe small. Since,
however, the boundary-layer thicknesflhas greatly increased at the sepa-
ration point, one will have there a great many subdivision points dis-
tributed over the profile. This iS h one respect convenient - the posi-
tion of the separation point is better defined. On the other hand, the
expenditure of work increases at such points. However, at the end of
this section we shall @int out a possibility of reducing the steps
in ~ direction without necessarily having to accept a step reduction
in q direction. At the same time we shall then be able to indicate a
criterion by which the necessity of a step reduction in ~ direction
may be recognized.

Once a certain selection of step magnitudes has been decided upon,
it is a question of obtaining a first approximation for the values fo,Kl
appearing in equation (15), in order to be able to execute the first step
in g direction. It should be noted that together with the initial pro-
file at s = so
from the series

the profile one

We then put

in fo,a:

also the values of u for values s < so may
—

developments. Particularly the values u-l ~ (x;

step ahead of the initial profile) are thus>known.

for a first approximation of the

[1
au

o ccur ing
ZO,o

Uo,u - U-l,a

k

~ auTherewith
J [1~dq too can be evaluated
o

experience has shown that this integration
out with sufficient accuracy by use of the

numerically. Our calculation

may be very conveniently carried
trapezoidal rule with the aid

of the present subdivision; this can be done purely schematically.by
calculation according to tables. For at the ~ points where the deriva-

& J
~tives become very large - whereby the values ~ d~ come to

a~ o a~
be of great importance in the calculation of the profiles and must be
deterndned relatively exactly as for instance in the neighborhood of the
separation”point- “itwill be necessary to select small k (and there-
with also 1) values
are distributed over
rule with sufficient

so that a sufficient
the profile to allow
accuracy.

nuniberof subdivision points
application of t;letrapezoidal
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If one puts, furthermore, with good approximation

(17)

U*l,Uand Ul, ~ may be calculated in first approximation.

MThe values thus ob~ained will be denotedby *1 1,0 and
[1

1

U1 l,U”

It will be best to-arrange the entire calculation procedure in the form
of a table (compare table I on page 31). With the values obt~i~ed

El one will form corrected values of the derivatives l>!
1 1,0

accor-dingto the scheme

whereugmn one obtains (with the

Lw]o,u

[1
U1 ~ ~ - u-l ~

> >
2k

aid of table II on page 31) a second

approximation
k]

~ ~ for the values ul ~ with the values 7~,~1-J,

and Cu taken from %he first table. Wher&as the derivatives
11

&
a~O,(J

formed in first approximation might show at a few
course, this will generally no longer be the case

[1
autives — . The columns for the quantities

a~ 0,0rl

H
U2 1 ~ occurring further on in table II will be

>

PO ints o an irregular
for the corrected deriva-

explained only later.

This procedure is continued until the values obtained in the third-
from-last column of the table no longer vary in the desired dectil. In
the examples we calculated the iteration was carried so far that for every
step ~a the values Uoca no longer varied except for an error of

,J

about 1/4 to 1/2 percent of the maxtium velocity ti(Ep) in each case.
For the selected step magnitude k this was the case after two to three
iterations.

Due to the favorable position of the errors, the profiles calculated
in the manner described generally show a very smooth couxse. If the
u = u(g,const) are concave in respect b the ~ axis, as is the case
for instance in the flow about the circular cyltnder or the ellipse near
the separation point (compare fig. 7 and fig. 12), the convergence occurs
only o“none side in the direction from larger to smaller values for u.
The opposite behavior exists when the course of this curve is convex with
respect to the ~ axis as is the case for instance in the boundary-layer
flow at the flat plate.
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If one wants to obtain with the described procedure a calculation
of the u variation as accurate as ~ssible without selecting too small
a step magnitude k, thereby increasing too much the expenditure in cal-
culation, one will find it necessary (as mentioned before) to make at
every step a correction which takes the fact into account that in setting
up the basic equation (15) the difference quotient of first approximation

-.

only was substituted for the derivative

II

alJ
aE p,cl

If one were to select instead the representation of higher approxi-
mation

one would obtain by maintaining equation (14)

* + * *
u (3+1,(3= u p-l,cf+ u p,cr+l + u p,u-1 - 2u*p,a + 2kfp,a (18)

instead of equation (15).

Since this relation, however, (as can be seen immediately)behaves
considerably less favorably regarding propa~tion of errors than equa-
tion (15), the profiles calculated with its aid will no longer show the
smooth course mentioned before. Calculation practice has shown that one
obtains very smooth curves if one writes instead of equation (18)

* * [1+2k&u Pi-lju= u p-lju + Pkfp,o
p,u

/

(19)

and forms the second derivative appearing in it according to the scheme

[11%

“~ &’
~2u* p,a+l - .p,u-1

h2 p,u= 21
(20)

from the first derivative

H

au

~
already calculated in good approxi-

. p,u

mation according to equation (17) by jumping over. However, the case u = 1
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requires special

But if one takes

‘J

[1&lconsideration stice is not known at first.
h P,o

into consideration that according to equation (16)

one may put

H&l .

~~ p,o

(21)

[1au
and hence calculate the value on the left from alxeady known

Tp,l o
according to equation (17).

We now use the relation (19) not as a mibstitute for (15) in the
sense that the entire calculation is to be made with (19), for it became
clear - particularly near the sep=ation point where the derivatives

h become very large - that the convergence relations here can be easily
a~
blurred (unless an especially small k value was selected); the values

‘P,ci
obtained by iteration do not remain quite fixed, but creep on

co&inously, although only by small =~ts (compare also the remarks
in section V).

Rather we use equation (19) for making a correction in the values

‘l)a obtained after the last iteration in the manner described above.

With the aid of the value [1au (0~ l;,(already contained in the
~ O,a

fourth column of table 1) to which we add the value
[1
&
av0,0

just cal-

culated according to equation (21) we determine (taking equations (20)
and (14) into consideration) the values

[1a%

~(~]O,a+ti[$]O,a-j=‘a = .U*-19”+ a = O,a = ‘*-1)” + 2

11 1 1 1 1
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We mw assume, for tistance, that the’values
[1
U2 l,U prescribed by

table II were the final values even in the first procedure; we then

Insert thevalues Da. in table II and calculate with the quantities ‘

A= + Ba appearing in them the values (corrected with respect to H*2l,L.
[1_*
up = Da+ 2(AU+ Bu)

1,G

these value’s, too, we note in the table. In the last columi of this
table we write the values

InU2 l,U = 1
6(E1) + ii*‘

If the corrected values

than 1/4 to 1/2 percent

vatives

[1G2 deviate
1,0

of 6) from
[1‘2 l,U

too much (that is, by more

we calculate with the deri-

~],,u- m,,.
2k

once more corrected values according ta table III, p.31. The values

[1‘3 1,0 then represent the final values for the profile at the mint

E= El?

For calculation of every step in ~ direction one must, therefore,
calculate three to four of the calculation tables mentioned. The time
expenditure may be estimated at approximately three to four hours per
step. It should be stressed that all calculation operations are of
purely schematic character and can therefore readilybe performed by
assistants.

The values obtained are plotted on millimeter graph paper and the
curve drawn through them. If slight scatter has resulted, after all, at
one point or the other, one eliminates it with the aid of the ~awing
before starting on the next step.

If
due to
longer

the graph of the profile calculated just now sho~’s that the curve),
we increase in boundary-layer thickness, at the upper end no
dies out gradually emugh toward the asymptotic value U, one adds,
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in calculating the following step, and q subdivision point
dtiection.

The following condition should be mentioned which became

in upward

evident in
the practical calculation. If a step magnitude not sufficiently small
is selected, two successive profiles may, due to accumulation of errors,
show points where they are somewhat too close, or else somewhat too dis-
tant from each other, compared to their actual course. In the calcula-
tion this can be recognized by the fact that the third profile following
these two profiles shows a behavior, at these points, compared to the
second profile opposite to the behavior of the first compared to the
second profile. For ~ values at which the first two profiles were
too close one notices a gap somewhat too wide between the last two and
vice versa. If one ties not want to repeat the calculation with smaller
steps, one may, as was found practically to be useful, once omit the
corrective calc~ation mentioned before for the profile to be calculated
next, thereby eliminating the fluctuating of the profiles, and may then
continue calculating in the normal manner.

According to our calculation experiences one can recognize that the
step magnitu& k must be

two Ii values obtained in

the same qa (thus 3-n the

reduced in ~ directionby the fact that the
the corrective calculation which pertain to

example considered above the values r%]

[1 )
L ‘JI,CI

and ~3 1,(s deviate from each other by considerably more than 1/4 to

1/2 percent of the pertaining ~ value.

If a new step magnitude in the ~ direction, kl, is selected kl< k

(
for instance, kl = ~

)
there appears as a result, because of equation (14),

also a new step magnitude.

zl =
r
2kl

in ~ direction. If one wants to continue the calculation with
smaller steps kl for instsmce starting from ~ = ~r one needs

initial values for futher calculation the numbers

u(~r)ozl) u(~r-kl)ozl) (a=l,2, . . .)

the
as the

The first named numbers may be read off directly on the profile curve
for ~ = gr already obtained. In order to obtain the latter, a double
graphic interpolationmust be made. One plots versus ~ the values
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Ll@@ (.= 1,2. . .) read off for the values of g=~~p~r)

from the curves of the previously calculated profiles. Generally it
will be sufficient to do this for the values

%Ep~21]
of three suc-

cessive profiles, thus for D=r-2,r-l,r. From the curves drawn
through them u = u(~,crzl) (u = 1,2 . . .) one may then read off the
values

(
)(U ~r-kl,u21 u = 1,2 ● . .).

If a boundary layer is to be calculated up to the separation ~int’,
it will in general be necessary to select, in the proximity of the sepa-
ration point, rather small steps kl Since, however, due to the large
increase in boundary-layer thickness, the profiles are here very elongated.,
one would obtain, because of the small step magnitude z in q direc-
tion, a very great number of subdivision points over the profile; this
would of course increase the time expenditure for the calculation of a
step. However, one may save a great @al of calculation expenditure by
selecting, instead of equation (7), for instance

as the initial equation, and then performing the titegration as before.

If one again denotes the step magnitudes in E direction by k, those

in q direction by Z, one obtains instead of equation (11) the relation

To the sane
spends half

In this
examples of

k=:

2 as in the first considered case, therefore, there corre-
the step magnitude in ~-direction.

manner the step reductions were carried out for the following
boundary-layer flow on the circular and elliptic cylinder.

The convergence of the iterations now occurred no longer only on one side
toward the limit but alternately (except for the values assumed for small

Tls”

The numerical calculation showed further that a further step reduc-
tion in ~ direction, still for the mme z, for instance with the aid
of the initial relation

was not advisable because the values assumed in the upper profile parts
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on the right side are given as differences of two (approximatelyequal)
large numbers and therefore scatter widely; by this the convergence relat-
ions may be concealed. Thus, if one is forced to reduce the step mag-
nitude k still further, one will do so in the manner described above
with ”theaid of the relation (=). It was found that one arrived in this
manner, even for the extreme example,of the circular cyllnder, at a
tolerable work expenditure even for the steps immediately ahead of the
,separationpoint.

The separation point ~ = ~a (and therewith s . sa) iS fo~d by

graphic interpolation, or extrapolation, of the values
[1

&

h ~=o
contained in the tables.

The example of the Blasius flow at the flat plate shows very clearly
“thehigh degree of accuracy attained with this method. Here the profile
obtained by continuation could be compared with the exact profile. After
calculation of six steps, the calculated values deviated so little from
the exact ones that they could hardly be distinguished within the scope
of drawing accuracy. The differences amount to less than 1/2 percent
referred to ~.

In order to enable following the mode of calculation in detail, we
add the complete calculation of the first step in the continuation of a
Blasius profile at tie flat plate.

IV. NUMERICAL EXAMPLES AND RESULTS

1. Continuation of a Blasius Profile at the Flat Plate.

The value s . 0 is to correspond to the leading edge of the plate.
For the boundary-layer
simplified to

equation (3) which because of p’(s) = o Ii

together with the continuity equation

&Js+&=o

K &J
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then exists according to -Prsndtl-Blasius,

of the fomn

v~ =+uw) “-’wi~h
L
:.-
,1,: for which applies
It

,, Vs+ o for

Vs+u for s+0

and

VS4U for ~+”
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as is well known, a solution

q -+0

*
and all q

and all s z O

The function q = q(~) satisfies the ordinary differential equa-
tion of the third order

9P’ ’=-P’”

and the boundary conditions

q)(o)=0

The values of ~’(~)

o
0.1
0.2
0.3
0.4
0.5
0.6

$; 0.7
I 0.8

0.9
1.0

*’?’(C)

o
0.0664
0.1328
0.1989
0.2647
0.3298
0.3938
0.4563
0.5168
0.5748
0.6298

“i
p We choose U = 1

~

!‘..

(+~

are to be taken from the following table:

1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

*W)

0.6813
0.7290
0.7725
0.8115
0.8460
0.8761
0.9o18
0.9233
0 ● 9411
0.9555

so that we may put

~=s

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

0.9670

0.9759
0.9827
0.9878
0.9915
0.9942
0.9962
0.9975
0.9984
0.9990

\.
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and start our contin~tion procedure at 9=1. As step
q direction we take 2 = 0.6 so that k becomes equal

NACA TM 1317

magnitude in

to 0.~8. me
initial profile then may be taken dtrectly from the above table, whereas
the profile one step farther back, thus the profile at s . 0.82, ig b

be obtained from this table by graphic interpolation. The values are
contained h the following table: -

o
0.6
1.2.
1.8
2.4
3.0
3.6
4.2
4.8
5.4

I

u(o.82,T-1)

o
0.225
0.430
0.626
0.782
0.894
0.955
0.982
0.995
1

o
0.6
1.2
1.8
2.4
3.0
3.6

:::
5.4
6.0
6.6

U(l>ll)

o
0.1989
0.3938
0.5748
0.7290
0.8460
0.9233
0.9670
0.9878
0.9962

I0.9990
1

Six steps (that is, up to s . 2.08) were calculated by the method

described. The calculation of the first step is contained completely in
the table added at the end of the report. The results sre represented
in figure 2.

2. Circulsr Cylinder According to Hiemenz.

Hiemenz9 measured the pressure distribution on a circular cylinder
of dismeter 2r = 9.75 centimeters Immersed in water and approached by
the flow at a velocity of 19.2 centimeters per second. ~:

In order to make the quantities appearing in the basic equations
7

dimensionless, one introduces the reference length Z = 1 centimeter
and the reference velocity V. =-7.151 centimeters per second which corre-
sponds for v . 0.01 centimete~ per second

R =~= 715.1

to a Reynolds nuniber

%. Hiemenz: Die Grenzschicht an einem in den gleichftkmigenFIUSS.
igkeltsstrom eingetauchten geraden fieiszylinder (The boundary layer on
a rectilinear circular cylinder immersed in the uniform fluid flow).
Dissertation G&tingen, 1911, published in Dingler’s polytechn. J. Vol. 326.
1911,PP.321-342.

/-.
+;...

_ .- __ I
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then the velocity distribution measured for O ~ s ~“7, that is up to
the separation point, observed shortly before s = 7 (correspondingto
an angle a of &)” to 82° from the forward stagnation pint) may be
represented satisfactorilyby the polynomial

u(s) = s - 0.006289 SS - 0.000046 S5

On the basis of the
Hiemenz could be used up
calculation starts at s
and thus k = 0.08 were
The representation of

previous indication, the solution of Blasius-
to the value s = 4.5 (a _ 550) so that our
. 4.5 (as does G5rtler’sl-”). The value Z =0.4,
selected as step magnitudes for the first steps.

f

s
1 dt andU =U(s)

4.5 w

against s may be seen from figure 3.

The initial profiles at E = - 0.08 and

tables, are compiled, together with the values

from the same tables, in tne following table:

~ = O, taken from Howarth’s

of
[1

&l
23sS=405

resulting

o
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
m

u(-0,08,T)

o
1.282
2.229
2.871
3.269
3.488
3;596
3.649
;.;$

3:674

o
1.289
2.2268
2.948
3.384
3.628
3.749
3.813
3.834
3.839
3.842

-&r5

x- 1S=4.5

0
0.008
0.104
0.249
0.367
0.448
0.497
0.529
0.538
0.540

When the latter values are used, the calculation of the first step
requires only one worksheet of the type described before. With the step
magnitudes indicated-y. first four steps. (up to E.= 0.32) were calculated.
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The profiles obtained are represented together with the initial profiles
in figure 4 (partly displaced with respect to each other).

With the initial relations (22) as a basis, five further steps
(up to ~= 0.52) were calculated for the same 2 = 0.4 and the required
k = 0.04. Likewise tith the use of equation (22), one step (~ =0. ~)

rwith Z = 0.08 = 0.283 and k = 0.02 and finally two more steps
with Z = 0.2, k = 0.01 (up to ~ = 0.56) were calculated. The pro-
files are also represented in figure 5.

By plotting of the values

to be ~sep = 0.5697, that iS

all together twelve steps were

curves u = u(~ ,const). Their

W@) the separation point was found.

Ssepq. 6.87 (compare figure 6). Thus

to be calculated. Figure 7 shows the
steep decline in the neighborhood of the

separation point is remarkable.

Figure 8 shows a comparison of a few of the profiles obtained by us
(-S) with those of Blasius-Hiemenz (— --B-H), Pohlhausen (— - —P), and
G&tler (— -G) which were obtained for the same pressure distributional.
The comparison shows, first of all, that the Blasius-Hiemenz solution
becomes insufficient in the neighborhood of the separation point; the
reason obviously lies in the fact that the series developments used con-
verge for large s only slowly, if at all, and that, therefore, with
merely the first three terms the actual course is not satisfactorily
represented there.

Our values agree best and most systematicallywith those obtained
by G&tler. The differences are increasingly noticeable toward the sepa-
ration point. The deviations from the values obtained by Pohlhausen,
considered as a whole, remain for this example within tolerable limits
although a systematic variation of the differences cannot be detemnined.
It is remarkable that the differences assume higher values precisely in
the proximity of the velocity maximmm (~ - 0.36, S* 6, a- 71°) (com-
pare the curve for 5 = 0.32 represented h figure 8) while again sub-
siding to some extent toward the separation point.

The separation point was found accortig to G&tler in good agree-
ment with our value ‘sep = 6.8, according to Hiemenz at Sfiep= 6.98,

and according to Pohlhausen at ssep . 6.94. M approximately correct

position of the separation point is, therefore, by itself not yet deci-
sive for the usefulness of a method.

llCompare K. Hiemenz, paper quoted in foot;ote 9, H. G&tler, paper
quoted in footnote 3, and K. Pohlhausen, “Zux naherungsweisen Integration
der Differentialgleichungder laminaren Grenzschicht” (On the approximate
integration of the differential equation of the laminar boundary layer),
Z.A.M.M. Bd. I, 1921, pp. 252-268.

I1
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3. Elliptic Cylinder of the Aspect Ratio 1:4.

As a further example, we calculated the boundary layer

tic cylinder of the aspect ratio 1:4, taking as a b.as$s the

distribution resulting from the potential theory.

2=~andVo=4.3Uo

were chosen as reference quantities for the introduction of

23

for an ellip.
pressure

dimensionlesss
quantities, with 20 being half the circumference of the ellipse and
U. the free stream velocity. The (dimensionless)velocity at the edge
of the boundary layer could be taken directly from a table by Schlichting
and Ulrich.” It is represented in figure 9 together with the function

In the interval O ~ s= 0.2 it was possible to represent u = U(s)

satisfactorily by the polynomial

u(s) = s - 5.116 SS

The initial profile, however, was chosen at s . 0.163 (~ = - 0.25) for
the reasons mentioned before. For the first six steps Z = 0.5 and
k . 0.125 were taken as step magnitudes. The two initial profiles are
r~presented in the following table, together with the values

11
Cws I

~ s = 0.163

l-l

0
0.5
1.0
1.,5
2.0
2.5
3.0

,2.

Iu(-o.375,q) u(-o.25J>q)

o
0.0573
0.0951
0.1166
0. I-268
0.1310
0.1323

0.1327

0
0.0389
0.0990
0.1226
0.1340
0.1389
0.1403
0.1408

[1

avs

.Ts =0.163

o
0.0949
0.2672
0.4235
0.5197
0.5703
0.5858 ~ ●

@. Schlichtingund A. Ulrich, “Zur Berechnung des Umschlages laminar-
turbulent” (On the calculation of the transition from lamlnar to turbu-
lent) Bericht S 10 der Lilienthal-Gesellschaft(1940), pp. 75-135.

/\

Ill!!
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From ~ = 0.5 onward the steps could, first, be increased. The
following further steps were calculated: Seven steps with

1=

2=
and
(up

was

(up
(up

~= o.7071 and k = 0.25 “(w to ~ = 2.25), three steps with

1, k= O.~ (up to ~ = 3.75), foux steps with 1 =l& = 1.414
k = 1 (up to ~ = 7.75), and nine steps with 1 = 2 and k = 2
to ~ = 25.75).

With the aid of the starting equation (22) another step reduction
made. The further steps were: Three steps with l=2andk=l

to ~ . 28.75) and finally one step with 1 .@= 1.414 and k= 0.5
to ~ = 29.25). A complete calculation was thus made of 33 steps

altogether.

It became clear that selection of larger steps is not advisable,
particularly at the point where the curve U = U(s) turns from its
steep ascent to the flatter cowse (compare figure L2).

On the “high plateau” of velocity distribution itself one could
have chosen steps somewhat larger but they would have had to be reduced
again when approaching the separationpoint. A large number of the pro-
files we calculated

determined from the

figure 11).

can be seen in figure 10.

variation of [1&l~~=~”as
The separation point was

ssep = 8.475 (compare

Since Schlichting and Ulrich completely calculated13 the same
example once according to the ordinary Pohlhausen method (P4-method),
and then according to a Pohlhausen method modified by taking a polynomial
of the sixth degree as a basis (P6-method),the comparison could be rpade
for a number of profiles. The results are compiled in figures 13 and 14.

As far as the pressure minimum the deviations between our curves
and the P4- and P6-curves are not too large. However, larger deviations
appear in the proximity of the separationpoint. There the profiles of
the original Pohlhausen method agree with ours better than the profiles
of the P6-method, especially for small ~ values. The resulting separa-
tion point was, accordtig to the P4-method, at ssep = 8.38, according
to the P6-method, at Ssep = 8.26; thus these values (especially that

of the p4-method) do not deviate too widely from our value.

13Quoted in footnote J-2.
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V. REMARKS RE@iRDING THE CONVERGENCE OF THE ITERATION PROCESS

Regarding the conditions of convergence,of the iteration process.,.
described in section III, we can prove the following theorem which will
probably be sufficient for the requirements of practical calculation.
If there applies for the profile at the point & = ~p for all. q S’qcro

o ~ [ulEp,q < U(EP)

and

II

@ll

~ Ep,~ [1u kp,~
<l+—

6(5P”) U(Ep)

the sequence of the velocity values obtained by

Iunlp+l,cr(u2 Cro)

the iteration process

converges with increasing n.

Thus one is always able to predict, when calculating a new step,
whether the iteration process will converge. The presuppositions of
the theorem are satisfied with certainty when for all q ~ quo

apply as is’ the case for instance for the profiles before the pressure

minimum; for then

is valid if v*” Is selected so that
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The presupposition’sare satisfied also for the S-shaped profiles

beyond the presswe minimum when For~ does not become too large.
h

the examples we calculated, boundary-layer flow for circular and elliptic
cylinder, the presuppositions are satisfied, up to the separation point.
Proof of the theorem: If one takes into consideration that according
to the procedure of section III one has to put

[1 u*p,a+l + l-1*p,u-1
‘*n+l ~l)a = +

2

[1% P+lJT- U(3-l,T

+
2k

~ “J p+l,u - ~-l)u[1
2 2k 1-

there follows with

(Cs5 (7.)

with the presuppositions taken Into consideration, obviously

<
[1

=udu p+l,a
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with O < a < 1 and a beind independent of n. Furthermore,
see for oneself that a (O < a < 1, independent of n) can be
so that simultaneouslythe estimations

.

.

.

exist so that

[1
du+l

[1

<d
p+l,o = a n P-t-l)u

must be true as well.

Hence there exists the limit

[1
~ P+l,u

27 -

one can
“chosen

(F”l~,2. - Fn-’]p+lJ.)+ “=” (“s “0)

since the series at

series.

One recognizes

instead of equation
can be proved under

right may be majorized by a convergent geometrical

further that . if eq~tions (18) or (19) are used
(15) - if convergence of the iteration process

‘he assumptions that for ~ = Ep and all q ~ TIa
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and

since one then finds the estiwtions

.

.

thus

[1du+l < [1.CLdu
P+l,a p-t-l,a

again with O < a< 1 and a independent of n. These presuppositions
are satisfied for instance for the profiles before the pressure”minimum.
However, in the proximity of the wall, if the profiles there show au
approximately rectilinear course, the convergence will take place only
very slowly.

Beyond the pressure minimum one can, therefore, not arrive at a
general statement on the convergence. As mentioned before, ow calcu-
lations in the proximity of the separation point showed that the case
of divergence may actually occur. Therewith the procedure we selected,,
using the relation (19) merely for the correction calculation, proves
to be perfectly reasonable also from the general point of view now
considered.

Correspondingly, one recognizes that the iteration process performed
with the aid of relation (22) certainly is convergent at the point
E=gp for O< 00 if there for all q z ~Uo
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and

If

1317

one takes generally the initial relation

the following sufficient conditions:

valid

Cfscfo would be assured under

For all q ~ qao there shall be

[1
0s Ugp,q< u(Ep)

and

_i ——
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Thus, if one wants on the right side a positive ltiit also for

\

m must be not geater than 3. “

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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TES FIS9!JSTEP IN TES COKTUWJATIONOF

DIE BIASIUSPROFILE

J-1a

o

0.6

1.2

1,8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

7.2

o

-0.1450
-0.’3461

4.Z!31.I.
4.4855

-o.28U
-0.5788

-0.2944
-0.%11

-0.2667
-o.4A28

-0.1761
-o.259k

-0.0833
-0.1233

-0.ohm
-0.06u

-o.0211
-0.0267

-mm%
-0.0056

0

0

o

-0.0435
-0.1038

-0.1473
-0.1457

-0.293
-0.1736

-0.4666
-0.1683

-0.6349
-0.1328

-0.7677
-0.0778

-0.8455
-0.0370

-o.@825
-0.0183

-0.s038
-0.wlm

-0.$KW3
-o.fxl17

4.9105

-0.9105

0.3282

0.3282

0.312

0.2793

0.226)

0.1619

0.1028

0.0537

0.0243

0.0093
.

0

0

0

0.05sQ8

0.05638

0.05027

0.04369

0.0291,4

0.01814

o.m967

o.m437

0.00167

0

0

0

o

-0.0026

-0.0083

-0. olk7

-0. 01%

-0.0185

-0.0139

-0.0082

-0. IN39

-0.0015

0

0

0

I

ccl

[1
:0.18U* 0,0

-0.144.3)

-0. 109I2

-o. 076S

-0.04878

-0.02772

4.01381

-0.00594

4. 0022+3

-0.00069

0

0

0

Bd

= ~co

o

.0.0209

S.0219

-0.0218

-0.0144

.0.0074

-0.0024

-0,0005

-0.0001

0

c1

o

0

o

-0.0235

-0.0302

-0.0365

-0.0334

-0.0259

4.0163

-0.0087

4.004C

-0.0015

0

0

0

co

U*O,C+l + ‘J*O, U-1
2

-o. 803i

-0.6132

-0.4386

-0.2896

-0.1739

4.0935

4.0U5

-0.0184

-0.0066

-0.0019

-o. m5

o

[1
*

‘1 l,a

-1.oa)o

-0.8266

4.6434

-0.4751

-o. 323n

-o. M28

.0.1098

-0.0532

-0.0224

-0.0081

4.0019

-0.0025

0

0“

0.1734

0.3566

0.5249

0.6770

0.8002

0.8932

0.9469

0.9776

0.9919

0.%81

0.9595

1

I
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o

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

6.6

7.2

%

aul
[1

,—
a~O,.

0

-0.1433
-0.3472

-0.2039
-0.4847

-0.2E08
-0.5725

-0.2917
-0.5522
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